A neural-network-based classification scheme for sorting sources and ages of fecal contamination in water.
نویسندگان
چکیده
Artificial neural networks (ANNs) were successfully applied to data observations from a small watershed consisting of commonly measured indicator bacteria, weather conditions, and turbidity to distinguish between human sewage and animal-impacted runoff, fresh runoff from aged, and agricultural land-use-associated fresh runoff from that of suburban land-use-associated-fresh runoff. The ANNs were applied in a cascading, or hierarchical scheme. ANN performance was measured in two ways: (1) training and (2) testing. An ANN was able to sort sewage from runoff with < 1% error. Turbidity was found to be relatively unimportant for sorting sewage from runoff, while gross measurements of gram-negative and gram-positive bacteria were required. Predictions clustered tightly around the known values. ANN classification of aged suburban runoff from fresh, and agricultural runoff from suburban was accomplished with > 90% accuracy.
منابع مشابه
Effect of pH, Chlorine Residual and Turbidity on the Microbial Bio Indicators of Drinking Water Network
Abstract Background and objective: Bioindicators of drinking water are always influenced by physical and chemical factors such as turbidity and chlorine. Considering the assessment of drinking water quality is based on residual chlorine, E.coli, heterotrophic bacteria and turbidity. We aimed to evaluate the effect of pH, chlorine residual and turbidity on the microbial ...
متن کاملDiscrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network
Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملDesign, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques
ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 36 15 شماره
صفحات -
تاریخ انتشار 2002